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Abstract
In this work we study the level spacing distribution in the classically mixed-type
quantum systems (which are generic), exhibiting regular motion on invariant
tori for some initial conditions and chaotic motion for the complementary initial
conditions. In the asymptotic regime of the sufficiently deep semiclassical
limit (sufficiently small effective Planck constant) the Berry and Robnik
(1984 J. Phys. A: Math. Gen. 17 2413) picture applies, which is very well
established. We present a new quasi-universal semiempirical theory of the
level spacing distribution in a regime away from the Berry–Robnik regime
(the near semiclassical limit), by describing both the dynamical localization
effects of chaotic eigenstates, and the tunneling effects which couple regular
and chaotic eigenstates. The theory works extremely well in the 2D mixed-type
billiard system introduced by Robnik (1983 J. Phys. A: Math. Gen. 16 3971)
and is also tested in other systems (mushroom billiard and Prosen billiard).

PACS numbers: 01.55.+b, 02.50.Cw, 02.60.Cb, 05.45.Pq, 05.45.Mt, 47.52.+j

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Quantum chaos research of the stationary Schrödinger equation concerns the energy spectra,
the eigenfunctions and the matrix elements of other observables (operators) [1–3]. One
of the most fundamental findings in quantum chaos was the discovery that the spectral
fluctuations (the fluctuations of the spectral staircase function around its smooth average
energy level density, after the unfolding, that is after reducing the mean energy level density to
1 everywhere) obey the predictions of the random matrix theory (RMT) [4, 5] if the classical
dynamics of the underlying Hamilton system is chaotic (and ergodic). If we do not consider
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spin, the existence of the antiunitary symmetries of the system warrants the applicability of
the Gaussian orthogonal ensemble (GOE) of random matrices, and of the Gaussian unitary
ensemble (GUE) otherwise, where the role of the antiunitary symmetries (the analog of the
classical anticanonical symmetries) is non-trivial and important [6, 7]. (In this paper we shall
further consider only the systems with an antiunitary symmetry, which includes the GOE case
but not GUE.) This so-called Bohigas–Giannoni–Schmit conjecture [8], also initiated by the
pioneering ideas of Casati, Valz-Gries and Guarneri [9], has been strongly corroborated by
the semiclassical method (Gutzwiller trace formula [1, 2]) and by the results of the spectral
autocorrelation function and its Fourier transform (the so-called form factor) first by Berry [10]
using the diagonal approximations in evaluating the double sums over classical periodic orbits,
and by numerous numerical studies. See e.g. [1, 2, 5]. Relatively recently [11] the leading
semiclassical term of the form factor has been supplemented by the next term arising due to the
existing pairs of almost identical one-encounter classical unstable periodic orbits in classically
ergodic systems with an anticanonical symmetry (such as the time reversal symmetry). This
program and procedure have been very recently further developed by Haake’s group in Essen
[12–14], yielding the final result in complete agreement with the prediction of the RMT to all
orders for times shorter than the Heisenberg time, and even for longer times very recently [15].
This implies that e.g. the delta statistics as evaluated in the RMT is completely reproduced
by this semiclassical theory. Unfortunately, the most popular statistical spectral measure, the
level spacing distribution, depends not only on the two-point spectral correlation function but
on all n-point correlation functions.

In the case of completely integrable systems the spectral statistics is Poissonian. This
is known since the semiclassical work by Berry and Tabor and is quite obvious (in systems
with two or more degrees of freedom). For details, careful numerical calculations and the
relevant references see [16]. We also have a kind of a probability limit theorem, stating that
a statistically independent superposition of Poissonian number sequences (like the regular
eigenenergy spectral sequences are) results again in a Poissonian sequence. Moreover, if
we superpose an infinite number of entirely arbitrary number sequences with nonvanishing
weights we get the Poissonian sequence. Therefore, all the Poissonian level sequences can be
lumped together into one single Poissonian sequence.

In the Hamilton systems with classically mixed-type dynamics, which is the generic case,
we have classically regular quasi-periodic motion on d-dimensional invariant tori (d is the
number of freedoms) for some initial conditions (with the fractional Liouville volume ρ1) and
chaotic motion for the complementary initial conditions (with the fractional Liouville volume
ρ2 = 1 − ρ1). The chaotic set might be further decomposed into several chaotic regions
(invariant components) in the case d = 2, whilst for d > 2 it is strictly speaking always just
one chaotic set due to the Arnold diffusion on the Arnold web, which pervades the entire
phase space. In a sufficiently deep semiclassical limit the Berry–Robnik (BR) picture [17] is
established, based on the statistically independent superposition of the regular (Poissonian)
and chaotic level sequences. It was implicitly based on the broad statement of the principle of
uniform semiclassical condensation (PUSC) of the Wigner functions of the eigenstates (see [3]
and the references therein), which generalizes Berry’s assumption of the semiclassical wave
functions [18].

Like usual, in this paper we shall consider only the case of just one chaotic component,
although the results can be easily generalized for more than one chaotic component. This
picture gives an excellent approximation for the statistics of spectral fluctuations of the mixed-
type systems, if the largest chaotic component is much larger than the next largest one, which
typically indeed is the case e.g. in 2D billiards.
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In such a case the energy spectrum of the mixed-type system can be described in the BR
regime of a sufficiently small effective Planck constant h̄eff by the following formula for the
gap probability E(S):

E(S) = Er(ρ1S)Ec(ρ2S), (1)

and the level spacing distribution P(S) (see e.g. [3]) is of course always given as the second
derivative of the gap probability, namely P(S) = d2E(S)/dS2, so that we have

P(S) = d2

dS2
Er(ρ1S)Ec(ρ2S) = d2Er

dS2
Ec + 2

dEr

dS

dEc

dS
+ Er

d2Ec

dS2
. (2)

The above factorization formula (1) is a direct consequence of the statistical independence,
justified by PUSC. Here by Er(S) = exp(−S) we denote the gap probability for the Poissonian
sequence with the mean level density 1. By Ec(S) we denote the gap probability for the chaotic
level sequence with the mean level density (and spacing) 1. Note that the classical parameter
ρ1 and its complement ρ2 = 1 − ρ1 enter the expression as weights in the arguments of the
gap probabilities.

Using the Bohigas–Giannoni–Schmit conjecture we conclude that in a sufficiently deep
semiclassical limit Ec(S) is given by the RMT, and can be well approximated by the Wigner
surmise

PW(S) = πS

2
exp

(
−πS2

4

)
, FW(S) = 1 − WW(S) = exp

(
−πS2

4

)
, (3)

such that Ec(S) is equal to

EW(S) = 1 − erf

(√
πS

2

)
= erfc

(√
πS

2

)
, (4)

where erf(x) = 2√
π

∫ x

0 e−u2
du is the error integral and erfc(x) is its complement, i.e.

erfc(x) = 1 − erf(x). In equation (3) WW(S) denotes the cumulative Wigner level spacing
distribution WW(S) = ∫ S

0 PW(x) dx and FW its complement. Under such an assumption the
explicit BR formula (in the special case of one regular and one chaotic component) follows
immediately:

PBR(S) = e−ρ1S

{
e− πρ2

2 S2

4

(
2ρ1ρ2 +

πρ3
2S

2

)
+ ρ2

1 erfc

(√
πρ2S

2

)}
. (5)

The correctness of this distribution function in the BR regime (sufficiently small h̄eff) is by now
very well established in highly accurate numerical calculations for all E(k, L) probabilities,
not only the gap probability [19].

In the present work the above basic BR formula (1) is generalized in two aspects, in order
to describe the main effects of deviation from the BR regime.

First, at not sufficiently small h̄eff (e.g. in billiards this means at low energies) the tunneling
effects mean overlapping of regular and chaotic eigenfunctions in the classically forbidden
region, giving rise to the ‘interaction’ and level repulsion between the semiclassical regular
and chaotic approximate eigenstates, and this coupling can be modeled by dropping the
factorization property (1). The couplings can be described in terms of the random matrix
ensembles having the BR distribution on the diagonal. Namely, we have the regular,
Poissonian, block (denoted by r) of relative size ρ1 and the chaotic diagonal block (denoted
by c) of relative size ρ2 = 1 − ρ1. The tunneling coupling matrix elements reside only in the
off-diagonal blocks coupling the r and c diagonal blocks. The underlying ensemble of such
block random matrices has been introduced and termed TDBR ensemble (tunneling distorted
Berry–Robnik) in a recent work by Vidmar et al [20]. An essentially 2D (two-level) analytic
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model has been derived there. It will be shown in the present work that this analytic model
is very successful at all spacings, whilst the TDBR ensemble of large matrices itself does not
correctly capture the behavior of real (billiard) spectra at small spacings, and an alternative
random matrix model, tunneling distorted Berry–Robnik–Brody (TBRB), will be introduced,
which is correctly described by the said analytic coupling model of Vidmar et al [20]. As for
the coupling matrix elements in this context, we should note that it is natural, but not absolutely
necessary, to assume the Gaussian distribution for the coupling matrix elements, with zero
mean and the variance σ 2. The results depend only weakly on the kind of the distribution
functions as long as they have the same variance σ 2.

Second, at not sufficiently small h̄eff (e.g. in billiards this means at low energies) the chaotic
eigenstates (their Wigner functions in the phase space) are not uniformly extended over the
entire classically allowed chaotic component, but are localized, i.e. effectively occupying a
volume smaller than the volume ρ2 of the entire classically chaotic component, the reason
being the dynamical localization effect (see e.g. the excellent review paper by Prosen [21] and
the references therein), discovered and explained by Chirikov, Casati, Izrailev, Shepelyanski
and Guarneri around the 1980s. (For a general overview see also [1, 2].) In the context of the
time-dependent Floquet systems, such as the kicked rotator, the dynamical localization has
been very extensively studied. For a review, see e.g. the paper by Izrailev [22]. It has been
observed that in parallel with the localization of the eigenstates one observes the fractional
power law level repulsion (of the quasi-energies) even in a fully chaotic regime (of the kicked
rotator), and it is believed that this picture also applies to time-independent (autonomous)
Hamilton systems and their eigenstates. Thus, we see the crossover behavior from GOE in the
case of extended chaotic states to the Poissonian statistics in the case of strong localization.
The level spacing distribution in such a transition regime of localized but chaotic eigenstates
can be described by the well-known Brody distribution with the only one family parameter β:

PB(S) = C1S
β exp(−C2S

β+1), FB(S) = 1 − WB(S) = exp(−C2S
β+1), (6)

where the two parameters C1 and C2 are determined by the two normalizations 〈1〉 = 〈S〉 = 1,
and are given by

C1 = (β + 1)C2, C2 =
(

�

(
β + 2

β + 1

))β+1

, (7)

with �(x) being the Gamma function. If we have extended chaotic states β = 1 and RMT (3)
applies, whilst in the strongly localized regime β = 0 and we have Poissonian statistics. Again,
by WB(S) we denote the cumulative Brody level spacing distribution, WB(S) = ∫ S

0 PB(x) dx,
and by FB(S) its complement. The corresponding gap probability is

EB(S) = 1

(β + 1)�
(

β+2
β+1

)Q

(
1

β + 1
,

(
�

(
β + 2

β + 1

)
S

)β+1
)

, (8)

where Q(α, x) is the incomplete Gamma function:

Q(α, x) =
∫ ∞

x

tα−1 e−t dt. (9)

By choosing Ec(S) in equation (1) as given in (8) we are able to describe the localization
effects on the chaotic component. Such an approach has already been proposed in the paper
by Prosen and Robnik [23, 24], and the resulting level spacing distribution, emerging from
this assumption, was called Berry–Robnik–Brody (BRB). It has two parameters: the classical
parameter ρ1 and the quantum parameter β.

It will turn out that this description is indeed excellent, and in addition, where the tunneling
effects become important, we combine this ansatz with the coupling picture to be described
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in section 2 for random matrix ensembles, like the analytic coupling model in [20] by Vidmar
et al, yielding then a three-parameter distribution with parameters ρ1, β and σ , for which we
find an excellent analytic description based on 2D matrices. The physical meaning of the
three parameters is very clear: ρ1 characterizes the division of the classical phase space into a
regular and chaotic component, β describes the degree of localization of Wigner functions of
the chaotic eigenstates on the classically chaotic component and σ measures the strength of
the tunneling couplings between the regular and chaotic eigenstates. The latter two parameters
must be understood as their average values over the eigenstates within the energy interval that
we consider. We call the resulting theory the TBRB theory.

The applicability of the Brody distribution in this context is still not well understood, but
we shall see that the theory describes very well the empirical data from the highly accurate
energy spectra of billiards at energies around and below the BR regime. Therefore, the resulting
theory is of semiempirical nature, but seems to be quasi-universal in the sense that below the
BR regime we indeed find spectral fluctuations, in particular the level spacing distribution,
which are well described by our theory on the very finest scale of level spacings. We have also
tried to use other one-parametric level spacing distributions instead of Brody, like e.g. those
proposed and studied in Izrailev’s papers [22, 25] (see also [26]), but must definitely conclude
that the Brody distribution is quite special; it gives by far the best agreement between the
theory and real spectra.

As we shall show, the dynamical localization effects can persist up to very high-lying
eigenstates, even up to one million, whilst the tunneling effects occur usually only at very
low-lying eigenstates, due to the exponential dependence on the reciprocal effective Planck
constant, ∝ exp(−const/h̄eff).

The paper is structured as follows: in section 2 we develop the analytical theory based
essentially on a two-level approach (2D random matrices), and in section 3 we introduce the
corresponding large (high-dimensional) ensembles of random block-structured matrices, and
test the accuracy of the analytic theory. In section 4 we present the numerical results for
the by far the best investigated billiard [34, 35] with λ = 0.15, and in section 5 we analyze
the numerical spectra for other shapes of the same billiard family. In section 6 we analyze
the mushroom billiard introduced by Bunimovich [27] and the Prosen billiard [28, 29]. In
section 7, we discuss our results and give the main conclusions.

2. 2D real symmetric random matrices in the spirit of TBRB theory

Consider 2 × 2 symmetric matrices A = (Aij ), where i, j = 1 or 2. In the present context
only the difference between eigenvalues is of relevance. Without loss of generality (see [30])
we may thus assume that the trace of A vanishes, i.e.

A =
(

a b

b −a

)
, (10)

where a and b are real. Introducing the polar coordinates a = r cos ϕ, b = r sin ϕ, where
r ∈ [0,∞) and 0 � ϕ � 2π , we can derive the general formula [31] for the level spacing
distribution:

P(S) = S

4

∫ 2π

0
dϕ ga

(
S

2
cos ϕ

)
gb

(
S

2
sin ϕ

)
, (11)

where ga(a) and gb(b) are the normalized but so far completely arbitrary probability densities
for the matrix elements a and b, respectively. By construction the distribution (11) is
automatically normalized, 〈1〉 = 1, but in general this is not true for the first moment,
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〈S〉 �= 1. If we want to use it as a model distribution for real, experimental, spectra after the
spectral unfolding, it must be normalized to the unit mean level spacing 〈S〉 = 1. Such a
normalized distribution will be denoted by P n(S). It can be easily obtained by rescaling the
argument of P(S) by a scale factor B:

P n(S) = BP(BS), with B =
∫ ∞

0
xP (x) dx. (12)

If ga(x) and gb(x) are regular and non-zero at x = 0, then the integrand at S = 0 is just a
non-zero number equal to ga(0)gb(0), and we get for small S

P(S) ≈ πS

2
ga(0)gb(0). (13)

Thus, in the case where both ga and gb are regular and non-zero at S = 0 we always have
linear level repulsion. This linear level repulsion law is very robust, and it depends only on
the regularity properties of the distribution functions of the matrix elements at a zero value.
For regular distribution functions ga,b(x) higher order corrections in S to this formula can be
obtained from Taylor expansions of ga(x) and gb(x) around x = 0. If either ga(x) or gb(x)

is zero at x = 0, the level repulsion is no longer linear, but of higher order, e.g. quadratic or
even cubic, depending on the behavior of ga(x) and gb(x) at x = 0. We also see that the level
repulsion is not linear in S, if ga(0) and gb(0) do not exist, since the distributions ga(x) and
gb(x) are singular at x = 0. In such a case we obtain a fractional power law level repulsion
discovered and studied in detail in [23, 24, 32, 33]. Indeed, we shall analyze this important
case in another paper, following a preliminary study in [31].

In the present paper we shall consider only the cases where the distribution of the off-
diagonal elements gb(x) is Gaussian with the variance σ 2, or exponential, with the same
variance. In the former case we have

gb(b) = 1

σ
√

2π
exp

(
− b2

2σ 2

)
, (14)

and in the latter case

gb(b) =
√

2

2σ
exp

(
−|b|√2

σ

)
, (15)

where we have assumed that gb(b) is an even function of b.
We should note that the energy level density (= eigenvalue density) n(E) of our general

2D matrices in (10) with the level spacing distribution (11) is given exactly by the formula

n(E) = P(2|E|), (16)

where |E| is the absolute value of the eigenvalue E.
Let us now assume that the diagonal distribution ga(a) is such that when b is forced

to be zero b = 0 (namely, gb(b) = δ(b), δ(x) being the Dirac delta function), we have a
prescribed level spacing distribution P0(S). Assuming that ga(a) is also an even function of
a, we immediately obtain

ga(a) = P0(2|a|). (17)

First we reconsider the TDBR theory presented in [20]. In order to describe the couplings
due to tunneling, it is then natural to consider ga(a) as derived from the BR level spacing
distribution (choosing P0(S) = PBR(S), see equation (5)) and then to calculate the tunneling
distorted distribution by using the following statistically averaged coupling distribution [20]:

gb(b) = 2ρ1(1 − ρ1)
1

σ
√

2π
exp

(
− b2

2σ 2

)
+ [1 − 2ρ1(1 − ρ1)]δ(b). (18)
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The resulting analytic theory has been tested in real spectra [20] and good agreement has been
found except for the small spacings S.

But we can do much better by going a little bit more deeply into the structure of the basic
formulas (1) and (2). So now we proceed to calculate an analytic approximation for TDBR
within such a 2D (two-level) random matrix scheme. For Ec(S) we shall assume the Brody
formula (8), in order to capture the localization effects on the chaotic component c.

We go back to the fundamental formulas (1) and (2) and write down explicitly the three
contributions to the level spacing distribution

P(S) = d2Er

dS2
Ec + 2

dEr

dS

dEc

dS
+ Er

d2Ec

dS2
, (19)

where now Ec(ρ2S) is the gap probability of the Brody distribution (8), and interpret them as
follows.

• Prr(S) = d2Er
dS2 Ec is the probability density that two regular levels are separated by a

distance S without any regular level in between (the first factor), and also no chaotic level
in between (the second factor). The integral

∫ ∞
0 Prr(S) dS is the probability that two

nearest neighbors are both regular ones.
• Prc(S) = 2 dEr

dS

dEc
dS

is the probability density that the regular and chaotic levels are separated
by a distance S without any other level in between. The integral

∫ ∞
0 Prc(S) dS is the

probability that two nearest levels are a pair of the chaotic and regular level.

• Pcc(S) = Er
d2Ec
dS2 is the probability density that two chaotic levels are separated by a

distance S without any chaotic level in between (the second factor) and also no regular
level in between (the first factor). The integral

∫ ∞
0 Pcc(S)dS is the probability that two

nearest neighbors are both chaotic ones.

With this insight we can now describe the couplings between the regular and chaotic
levels only (i.e. no r–r and no c–c correlations) due to the tunneling. In (11) we assume
P0(S) = Prc(S). According to (17) we have ga(a) = Prc(2|a|), and we assume the Gaussian
couplings (14), leading to the first central result of this paper:

P(S) = Prr(S) + Pcc(S) +
S

σ
√

2π

∫ π/2

0
Prc(S cos ϕ) exp

(
− (S sin ϕ)2

8σ 2

)
dϕ. (20)

(Here we have used the fact that ga(a) and gb(b) are even functions of their argument.
This formula is also referred to as the improved two-level theory of the generalized TDBR
distribution, generalized in the sense that the localization effects are included, and that
it corresponds to the block matrices with only c–r couplings included (T-model). See
appendix C.) If, instead, we use the exponential couplings (15) rather than Gaussian, but
with the same variance σ 2, we find

P(S) = Prr(S) + Pcc(S) +
S
√

2

2σ

∫ π/2

0
Prc(S cos ϕ) exp

(
−S sin ϕ

σ
√

2

)
dϕ. (21)

It should be noted that a priori there is no universal modeling of the coupling distribution gb(b),
and thus various distributions can be used. But for several reasons the Gaussian couplings are
most meaningful. Nevertheless, on several occasions we have tested the dependence of the
final results at small σ on the choice of gb(b) with the same variance σ 2, and found that this
dependence is indeed very weak. In the following we shall always assume Gaussian model
unless stated otherwise.

The distribution (20) is the sought generalized analytic model of the level spacing
distribution of the TDBR random matrix model of [20] with the three parameters ρ1, β

7
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and σ . It is normalized to a unit total probability, but its first moment is not yet equal to 1.
Before using it we must normalize the first moment to 1 as described in equation (12).

In the case β = 1 this is the improved analytic two-level model of the tunneling coupled
random matrices of the TDBR matrix model in [20]. It agrees with the analytical formula (18)
derived in [20] only for large S values, and deviates from that at S of the order of few σ . This
also becomes clear if we compare the constant and non-zero values of the underlying level
spacing distributions at zero level spacing S = 0, namely we find:

• For the BR distribution (5): P(0) = ρ1(2 − ρ1)

• For the coupling model (18) [20]: P(0) = ρ1(2 − ρ1)
(
1 − 2ρ1 + 2ρ2

1

)
• For the coupling model (20) (with β �= 0): P(0) = ρ2

1 .

The effect can be graphically clearly seen in figures 4, 5 and 6 of [20]. For the underlying
high-dimensional matrix models, TDBR, the actual P(S) goes down to zero as S → 0, which
is still not the case in our present improved analytical model, but it comes very close to that. In
fact, there is a very small, exponentially small linear regime, where P(S) goes steeply down
to zero from the value ρ2

1 .
The improvement of our two-level analytic model of the high-dimensional generalized

TDBR matrix ensemble [20] is thus considerable.
However, we have found out empirically that this model along with its best analytical

formula (20) is only a good starting approximation. Namely, it turns out, quite surprisingly
that the coupling model (18) developed in [20] is a much better description of the real energy
spectra of dynamical systems, such as 2D billiards, than formula (20), especially at small
values of S.

Therefore, the second central result of this paper is that the couplings described in (18)
lead to the correct description of real energy spectra, up to the values of order σ ≈ 0.1.
The corresponding random matrix ensemble is not the TDBR model in [20], but instead
the sparsed random matrix ensemble with uniformly spread non-zero off-diagonal Gaussian
distributed matrix elements (14) (sparsed all-to-all couplings) with the sparsity parameter
s = 2ρ1ρ2 = 2ρ1(1 − ρ1) (s is the fraction of the non-zero off-diagonal matrix elements).

The physical explanation of this finding is still open, but certainly relates to the fact that
not each regular level is coupled to each chaotic level, but instead these couplings depend
on the energy closeness and geometrical closeness of the eigenstates and corresponding
semiclassical Wigner functions. Thus to explain it we must study the quantum mechanics
in the phase space, that is the Wigner functions, in more detail. This is open in our future
research. However, we have a heuristic argument. In appendix C we show the two relevant
random matrix coupling models, the T-model (TDBR) and the S-model (TBRB). We assume
that in the case of clear separation of the regular and chaotic basis states the T-model is the
correct description of the spectral correlations. But if we do not know anything about the
mixed-type Hamilton system, but only the fact that the diagonal matrix elements have
the BRB level spacing distribution, then we must allow for a random permutation of the
diagonal elements, or—keeping the diagonal block structure—we assume randomly and
uniformly distributed non-zero (Gaussian) coupling matrix elements, then obviously with
the sparsity parameter s = 2NrNc/(N

2 − N) = 2N2ρ1ρ2/(N
2 − N) ≈ 2ρ1ρ2, which is then

the S-model.
To conclude this section, we propose that the correct semiempirical theory of the regime

just below the BR regime in real quantal energy spectra is the generalized Berry–Robnik–Brody
theory which we shall call TBRB theory, corresponding to the S-model.

The special case without couplings, describing the dynamical localization effects, reduces
precisely to the BRB theory devised by Prosen and Robnik [23, 24]. The resulting level
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spacing distribution PBRB(S) is derived from (2) with Er(S) = exp(−S) being Poissonian gap
probability, and Ec(S) = EB(S), as given in equation (8), being the Brody gap probability
with a given parameter β measuring the degree of (dynamical) localization.

If there are couplings due to the tunnelings, which is the general case, we find
semiempirically that the correct level spacing distribution is described by the coupling formula
(11) with ga(a) = PBRB(2|a|) and gb(b) in (18) as introduced in [20], and PBRB(S) denotes
the Berry–Robnik–Brody level spacing distribution described above.

Therefore, the second central result of this paper can be summarized in the final formula,
like in (11), namely

P(S) = 2ρ1(1 − ρ1)S

σ
√

2π

∫ π/2

0
PBRB(S cos ϕ) exp

(
− (S sin ϕ)2

8σ 2

)
dϕ

+ (1 − 2ρ1(1 − ρ1)) PBRB(S), (22)

where PBRB(S) is the Berry–Robnik–Brody level spacing distribution derived from (1), (2)
and (6)–(8). In appendix C we give an overview of the three random matrix models and the
corresponding two-level coupling theory.

3. Numerical studies of the analytical models and the corresponding ensembles of large
matrices: TDBR and TBRB

The quality and validity of our analytic theory (20) should be first tested for the N dimensional
random matrix ensembles generalizing (10).

We assume on the diagonal a Poissonian block of relative size ρ1, followed by a chaotic
block of relative size ρ2 = 1 − ρ1 obeying the Brody distribution (6) and (8) with a given β,
and for the off-diagonal block coupling only r and c levels we assume precisely the Gaussian
distribution (14). This is precisely the generalized TDBR random matrix model, generalized
in the sense that in general 0 � β � 1, describing the localization effects, whilst in [20]
β = 1. In appendix C this is the T-model.

Numerical calculations have been performed using such an ensemble of matrices of size
N = 4000. To avoid the finite size effects we have used in the statistical analysis only the
middle 2000 levels, and drew from the ensemble 1000 matrices. The unavoidable problem
with some ambiguity and arbitrariness of the spectral unfolding has been treated by using the
most preferred global empirical unfolding using the average over the entire spectral stretch.
This is very important, as we found a very strong dependence of the results upon the choice
of the local unfolding (average over a certain number γ of neighbors), and only in the case of
the global unfolding the results agree with the analytical theory.

When comparing the numerical results with our analytic theory (20) on the largest scale
in the standard representation P(S) versus S, we saw within the graphical resolution no
deviations between the numerical experiment and the theory. Therefore, in order to exhibit
the finest details of the excellent agreement between the theory and the numerics we use the
so-called U-function representation, which is the following transcendental transformation of
the cumulative (or integrated) level spacing distribution W(S) = ∫ S

0 P(x) dx, introduced by
Prosen and Robnik in [24]:

U(S) = 2

π
arccos

√
1 − W(S). (23)

The U-function has the advantage that its expected statistical error δU is independent of S, it
is constant for all S and equal to

δU = 1

π
√

Ns

, (24)
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Figure 1. U − UB versus UB and nonlinear scale of S for the generalized 2D TDBR theory (full
line) and large generalized TDBR matrices (the numerical data with ± standard deviation strip),
the TBRB curve (dashed) (couplings like in Vidmar et al [20]) and (dotted) BRB curve (σ = 0).
The parameter values are: (ρ1 = 0.2, β = 0.7, σ = 0.05) (a), (ρ1 = 0.2, β = 0.7, σ = 0.025)
(b), (ρ1 = 0.3, β = 0.7, σ = 0.01) (c) and (ρ1 = 0.5, β = 0.7, σ = 0.02) (d). The analytical
2D TDBR formula is evidently excellent approximation for large generalized TDBR matrices.

where Ns is the total number of objects in the W(S) distribution. The constant prefactor in (23)
is chosen such that U(S) goes from 0 to 1 when W(S) goes from 0 to 1. For the completeness
of our exposition, we give a short derivation in appendix A.

In figure 1(a) we plot our results for the particular case ρ1 = 0.2, β = 0.7 and σ = 0.05.
We plot not the U-function itself, but the fine difference U(S) − UB(S), where UB is the
U-function of the Brody distribution that is

UB(S) = 2

π
arccos

√
1 − WB(S), (25)

where the Brody cumulative level spacing distribution WB(S) is given by equation (6). We plot
this difference not versus S but instead versus UB, and indicate on the abscissa the nonlinear
scale of S. If the Brody distribution itself were a perfect description of data, the curve would lie
on the abscissa. The fact that we have nonvanishing ρ1 and couplings of ‘strength’ σ = 0.05
implies expected deviation from the abscissa (Brody). We show the strip of the numerical
data of U(S) with the indicated ±δU error for the matrices, and also the theoretical curve (no
fitting!) from our two-level theory (20). The agreement is really perfect.
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Figure 2. U − UB versus UB and nonlinear scale of S for the 2D TBRB theory (full line) and
large TBRB matrices (the numerical data with ± standard deviation strip), the generalized TDBR
curve (dashed) and (dotted) BRB curve (σ = 0). The parameter values are: (ρ1 = 0.2, β =
0.7, σ = 0.05) (a), (ρ1 = 0.2, β = 0.7, σ = 0.025) (b), (ρ1 = 0.3, β = 0.7, σ = 0.01) (c)
and (ρ1 = 0.5, β = 0.7, σ = 0.02) (d). The analytical 2D TBRB formula is evidently excellent
approximation for large generalized TBRB matrices.

Moreover, we show that the theory based on the coupling assumption (18) used in the
previous work by Vidmar et al [20] (dashed curve), and now generalized to the TBRB theory,
follows the numerical data only for large S > 0.3, and then deviates greatly from the present
theory at smaller S. It is this latter theory, TBRB, which correctly captures the spectral
properties of real spectra, as will be shown in the next section. In appendix C this is the
S-model.

In figures 1(b)–(d) we show three more cases at smaller σ demonstrating that the
agreement with the generalized TDBR theory (20) is perfect, namely for the parameter
values (ρ1 = 0.2, β = 0.7, σ = 0.025), (ρ1 = 0.3, β = 0.7, σ = 0.01) and
(ρ1 = 0.5, β = 0.7, σ = 0.02), respectively.

In figures 2(a)–(d) we show analogous plots for the analytic 2D TBRB theory in
comparison with the corresponding large matrix ensembles introduced in section 2, where
we have a BRB diagonal block, with the uniformly randomly spread non-zero off-diagonal
matrix elements, having the Gaussian distribution with a given variance σ 2 and the sparsity
parameter s = 2ρ1ρ2 = 2ρ1(1 − ρ1). The dimensions of the matrices and the procedure
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Figure 3. Gaussian (full) and exponential (dashed) TBRB P(S) versus S for ρ1 = 0.175, β = 0.47
and σ = 0.01, for 0 < S < 0.35. The dotted curve is for σ = 0.

of calculating their level spacing distribution are exactly the same as in figure 1. Excellent
agreement of the TBRB theory and the numerics is found (there is no fitting here!).

Finally, we should mention that switching from the model with Gaussian couplings (14)
to the exponential couplings (15) in equation (22) at such a small σ = 0.01 makes a small
difference in P(S) as shown in figure 3, confirming the expectation that it is the variance
σ 2 which matters in this respect but not the details of the distribution of the coupling matrix
elements gb(b). Note that the two curves coincide for S > 0.1.

At the larger value of σ = 0.05 we see larger deviations, but still not very dramatic, in
figure 4. Note that the two curves coincide for S > 0.3. Probably we can conclude that the
Gaussian model of the couplings is the most natural one, and emerges naturally as a result of
certain averaging of the couplings over a large number of eigenstates in the energy interval
that we consider in dynamical systems.

4. Numerical spectra in a 2D mixed-type billiard and application of the BRB theory

After setting up our analytic theory (TBRB), resulting in formula (22), and comparing it with
the generalized TDBR ensembles of random matrices of the type ‘BRB diagonal + off-diagonal
r-c tunneling couplings’, as described in section 3, we proceed by applying the TBRB theory
in real dynamical systems. It will be seen that in most systems the tunneling couplings are
practically absent—except at very small energies—due to the exponential dependence on
1/h̄eff . On the other hand the effects of dynamical localization persist up to very high-lying
eigenstates, sometimes even up to one million above the ground state. In this and in the
next section we shall see examples, billiard models, in which tunneling effects are completely
absent, that is σ = 0. This is then just the BRB theory as a special case of TBRB.

We have chosen the one parameter family of 2D billiards introduced and studied first
classically in [34], and quantally in [35]. The billiard boundary is defined in the physical
complex w plane as the quadratic conformal map w(z) = z + λz2 of the unit circle |z| = 1 in
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Figure 4. Gaussian (full) and exponential (dashed) TBRB P(S) versus S for ρ1 = 0.175, β = 0.47
and σ = 0.05, for 0 < S < 0.5. The dotted curve is for σ = 0.

the complex z-plane. We have used a variety of different shapes λ equal to 0.125, 0.14, 0.15,
0.16, 0.175, 0.20 and 0.25. The corresponding classical parameter ρ1 has been very carefully
and accurately calculated using the method based on [36], with the values (accurate better
than within 1%), respectively: 0.38, 0.24, 0.175, 0.121, 0.05, 0.0 and 0.0. The details of the
method and the tests are given in appendix B.

The energy spectra have been calculated with great accuracy, much better than 1% of the
mean level spacing; we estimated the largest error as smaller than 0.3% of the mean level
spacing. First we used the basic method of the conformal mapping diagonalization technique
proposed and used in [35], and improved in [32], yielding about 50 000 lowest levels within
the above mentioned accuracy. The accuracy was cross-checked with yet another almost
general method published in [37], the so-called expanded boundary integral method, and
perfect agreement was found. For higher levels we had to stick to another method, namely the
scaling method of Vergini and Saraceno [38], in two versions, the first based on plane waves
and the second on circular waves. Perfect agreement was achieved. In order to go to even
higher energies we had to employ the singular value decomposition methods to find sufficiently
accurate results when dealing with the large and almost singular matrices. Therefore, after
accomplishing these techniques, we have complete confidence in the above-stated accuracy of
our numerical energy spectra of the billiard.

As for the unfolding procedure we have used strictly and exclusively the exact Weyl
formula with perimeter and curvature corrections. Namely, if the Helmholtz equation in our
units is written as �ψ + Eψ = 0, then the Weyl formula for the number of energy levels up to
the energy E reads N (E) = AE/(4π) − L

√
E/(4π) + 1/6, where A and L are the area and

the perimeter of the billiard, respectively, and we assume the Dirichlet boundary conditions.
When analyzing the small effects that we are studying in the level spacing distribution for

the large matrices from the TBRB ensemble we found that they are very sensitively dependent
on the choice of an empirical unfolding procedure, which usually means taking a local average
of the level spacings up and down in the spectrum by a certain number of γ neighbours.
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Figure 5. The level spacing distribution for the billiard λ = 0.15, compared with the analytical
formula for 2D TBRB (full line) with parameter values ρ1 = 0.183, β = 0.465 and σ = 0. The
dashed curve close to the full line is TBRB with classical ρ1 = 0.175 is not visible, as it overlaps
completely with the quantum case ρ1 = 0.183. The dashed curve far away from the full line is
just the BR curve with the classical ρ1 = 0.175. The Poisson and GOE curves (dotted) are shown
for comparison. The agreement of the numerical spectra with TBRB at σ = 0 (which is just
BRB) is perfect. In the histogram we have 650 000 objects; therefore, the statistical significance
is extremely large.

Changing γ has drastically changed the structure of the U-function plots introduced in the
previous section, overshadowing the physical effects. We should mention that, nevertheless,
in the usual large scale representation P(S) (P versus S) these effects were entirely invisible
within the graphical resolution.

For the sake of analyzing the real billiard spectra, we have thus completely abandoned
using the ensembles of large matrices, due to the ambiguity of the unfolding procedure.
Therefore, we have compared the results of the numerical billiard energy spectra only to our
analytic TBRB theory developed in section 2, thereby completely avoiding the numerical
unfolding procedures in large matrices.

Our best example and most extensively studied case λ = 0.15 is shown in figure 5 for the
standard representation P(S). The parameters are ρ1 = 0.175, β = 0.465 and σ = 0. On this
scale we have just perfect agreement between the numerical data and the TBRB theory.

To see the effects more clearly a much more sensitive representation is necessary. This
is shown in figure 6 where we present the decadic log–log plot of log W(S) − log WB(S),
versus log S, where WB(S) is the best fitting Brody distribution with β = 0.313, obtained
over the interval 0.001 � S � 1. The best fitting BRB distribution (the full line) has
β = 0.465. We see that BRB model is indeed highly accurate, as it captures the data over the
interval S ∈ (0.0001, 1), on the interval S ∈ (0.001, 1) even excellently, and the fluctuations
at S � 0.001 are probably of purely statistical nature. We could say that the fractional
power law level behavior (straight line) is observed roughly on the interval S ∈ (0.001, 0.05),
which is roughly consistent with findings in [32]. For S � 0.001 the slope is Poissonian, as
P(S = 0) �= 0.
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Figure 6. log W(S)−log WB(S) versus log S for λ = 0.15 for the data with the estimated statistical
error (dotted). Here WB(S) is the best fitting Brody distribution with β = 0.313 over the interval
0.001 � S � 1. The full curve is 2D TBRB analytic theory with the the quantal ρ1 = 0.183
and it captures the numerical data perfectly down to at least S = 10−3, with parameter values
β = 0.465 and σ = 0, and the dashed line close to it is for classical ρ1 = 0.175. The two curves
almost overlap. The other dashed curve deviating more strongly from the full line is just BR for
comparison.
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Figure 7. U-function plot (with the expected ± statistical error) for λ = 0.15. The full curve is
the analytic theory TBRB with ρ1 = 0.183, β = 0.465 and σ = 0. The classical value of ρ1 is
0.175 and the corresponding curve is the dashed one close to the full line, whilst the other dashed
curve is just BR.

Finally, at the finest scale, in figure 7 we plot the U-function in the same style as in
figure 1, and for the same data as in figure 5, and see almost perfect agreement between the
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numerics and the TBRB theory with the above stated parameter values. We see great deviation
from the best BR curve (dashed), and also from the Brody curve (the abscissa), thus confirming
that the fractional power law level repulsion breaks down at the smallest spacings S. We also
see that the tunneling couplings are very small, in fact negligible, so that σ = 0.001 yields
the same result within the graphical resolution like σ = 0. Please observe that the perfect
agreement extends over the entire range of S ≈ 0.003 up to S > 5.

The physical interpretation of these results is clear. We have divided classical phase space
with ρ1 = 0.175, the chaotic eigenstates (their Wigner functions) are quite strongly localized
with the Brody parameter β = 0.465, and the regular and chaotic states are only very weakly,
or even negligibly, coupled due to the tunneling effects. We have taken into account the energy
levels in the range k = √

E ∈ [2000, 3000]. The statistical significance is very high, as we
have Ns = 650 000 objects in the histograms, and the expected statistical fluctuations are
small as indicated by the plus–minus one standard deviation strip in the U-function plot. We
claim that this agreement and success of our approach is certainly not accidental, although
the other cases at different shape parameters λ do not show such perfect agreement, as we
shall discuss below. A closer inspection of the Wigner functions of eigenstates qualitatively
confirms this picture, but the quantitative details are subject of a separate paper [44].

We have also used the Izrailev distribution, several versions [22, 25, 26], instead of the
Brody distribution for Ec, see equation (8), but found that in the best fit procedure the Brody
distribution gave much better agreement of our theory with the numerical spectra.

5. Numerical spectra for other shapes λ and further application of the TBRB theory

We have analyzed the energy spectra of other billiard shapes as well. The general comment
is that the tunneling effects and σ are very small or almost absent, hence σ = 0, whilst the
localization effects are quite strong, leading to the BRB level spacing distribution instead of
BR. Quite often, ρ1 needed to find the best or even perfect agreement between the theory and
the numerics is larger than the classical value, thereby also capturing the localization effects
in the sense of making the effective regular component larger than in the classical dynamics.
Sometimes, on rare occasions, the quantal value of ρ1 is less than the classical ρ1. In order
to understand in detail why this is so, we have to study the structure of eigenstates and the
corresponding Wigner functions in the ‘quantum phase space’.

Such a situation is met e.g. in the case of λ = 0.125. In figure 8 we show the U-function
plot with the best fit parameters σ = 0, β = 0.29 and ρ1 = 0.6. The classical value of ρ1 is
0.38. The agreement is practically perfect.

In the case of λ = 0.14 we again find very good agreement at not too large S, namely up
to S ≈ 3, with the classical ρ1 = 0.24, β = 0.295 and σ = 0. See figure 9.

The next case is λ = 0.16, figure 10. The agreement is again very good. The theoretical
curve (best fit in β, and quantal ρ1 = 0.09) captures the qualitative behavior of numerical
spectra, and is expected to improve at higher energies, but still below the BR regime. For
this to demonstrate, better numerical methods and computers are needed. Here the quantal
ρ1 = 0.09 is smaller than classical ρ1 = 0.121.

In the case λ = 0.175 (figure 11 ) again we find practically perfect agreement, if we
replace the classical value of ρ1 = 0.05 with the best fit value ρ1 = 0.061 and take β = 0.718.
Here again the quantal effective ρ1 is larger than the classical one, capturing the fact that the
localized chaotic eigenstates occupy less volume than the classical chaotic component. In
other words, the effective quantal regular component is larger than the classical one.
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Figure 8. U-function plot (the data with ± expected statistical error) for λ = 0.125 with the best fit
parameters σ = 0, β = 0.29 and quantal ρ1 = 0.6 (full line) and the classical value of ρ1 = 0.38
(the inner dashed line), whilst the outer dashed curve is just BR. k = √

E ∈ [2000, 3000],
Ns = 640 000.
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Figure 9. U-function plot (the data with ± expected statistical error) for λ = 0.14 with the best fit
parameters σ = 0, β = 0.295 and quantal ρ1 = 0.27 (full line) and the classical ρ1 = 0.24 (dashed
close to the data). The outer dashed line is just BR. k = √

E ∈ [2000, 2500], Ns = 300 000.

In the almost fully chaotic (but not yet strictly ergodic) case1 at λ = 0.20, shown in
figure 12 we find ρ1 = 0, σ = 0 and β = 0.67, thus exhibiting a pure Brody distribution, far

1 There are thin whispering gallery regions (of Lazutkin) bounded by invariant tori, as the billiard boundary is
analytic and convex, and also very small regular islands near the stable periodic orbits.
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Figure 10. U-function plot (the data with ± expected statistical error) for λ = 0.16 with the best
fit parameters σ = 0, β = 0.446 and quantal ρ1 = 0.09 (the full line) and the classical ρ1 = 0.121
(the inner dashed line). The outer dashed line is just BR. k = √

E ∈ [2000, 2400], Ns ≈ 300 000.
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Figure 11. U-function plot (the data with ± expected statistical error) for λ = 0.175 with the
best fit parameters σ = 0, β = 0.718 and the quantal ρ1 = 0.061 (full line), and with classical
ρ1 = 0.05 (the inner dashed line). k = √

E ∈ [2000, 2400], Ns ≈ 300 000. The outer dashed line
is just BR.

away from GOE, implying that the chaotic eigenstates here are still strongly localized (in the
mean).

Similarly, in the almost fully chaotic (but not yet strictly ergodic2) case at λ = 0.25, shown
in figure 13 we find ρ1 = 0, σ = 0 and β = 0.89, thus exhibiting a pure Brody distribution,

2 Here the boundary has a zero curvature point at φ = π or z = −1 or w = −3/4, and therefore due to the Mather
theorem the whispering gallery modes (of Lazutkin) are all broken, but there are nevertheless still very small islands
of stability around the stable periodic orbits which still exist.
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Figure 12. U-function plot for λ = 0.20 with the best fit parameters σ = 0, β = 0.67 and
the quantal and classical ρ1 = 0.0. k = √

E ∈ [0, 550], Ns ≈ 40 800. Here the level spacing
distribution is already purely Brody (the abscissa). The dashed curve is GOE.
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Figure 13. U-function plot for λ = 0.25 with the best fit parameters σ = 0, β = 0.89 and the
quantal and classical ρ1 = 0.0, and k = √

E ∈ [0, 540], Ns ≈ 40 800. Here the level spacing
distribution is already purely Brody (abscissa). The dashed curve is GOE.

still significantly away from GOE, implying that the chaotic eigenstates here are still localized
(in the mean), but less strongly than in the case of figure 12, as should be expected.

6. The Prosen billiard and the mushroom billiard

We have also studied the Prosen billiard [28, 29] defined in polar coordinates as r(ϕ) =
1 + a cos(4ϕ). For a = 0.04 the classical ρ1 = 0.092, and we have calculated the energy
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Figure 14. U-function plot for the Prosen billiard a = 0.04. The full curve is BRB with quantal
ρ1 = 0.066 and β = 0.65, the dashed curve is BRB with classical ρ1 = 0.092 and β = 0.694.
The outer dashed curve is just BR with the classical ρ1. The spectral stretch includes levels from
5000–100 000.
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Figure 15. U-function plot for the Prosen billiard a = 0.03. The full curve is BRB with quantal
ρ1 = 0.18 and β = 0.5, the dashed curve is BRB with classical ρ1 = 0.218 and β = 0.557.
The outer dashed curve is just BR with the classical ρ1. The spectral stretch includes levels from
5000–100 000.

spectrum for the low-lying levels with sequential number 5 × 103–1 × 105, using the scaling
method of Vergini and Saraceno, based on plane waves. The results are shown in figure 14.
We see that the effects of tunneling are completely absent and BRB model applies.

We did the same thing for another value of a = 0.03. The classical ρ1 = 0.218. The
results are shown in figure 15. We again see that the effects of tunneling are completely absent
and BRB model applies.
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Figure 16. The geometry of the mushroom billiard introduced by Bunimovich [27].
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Figure 17. P(S) for the mushroom billiard with the energy spectrum exactly as in [20]. The full
curve is TBRB with classical ρ1 = 0.268, β = 1 and σ = 0.1. The dashed curve is TDBR with
the same parameters, and the thick dotted curve is just BRB (σ = 0) and the same β = 1 and ρ1.
The thin dotted curves are just Poisson and GOE.

We have also investigated the so-called mushroom billiard introduced by Bunimovich
[27] for the geometrical configuration as shown in figure 16. It has the important property
that there is exactly one chaotic component and exactly one regular component in the classical
phase space. Moreover, it exhibits ‘fast ergodicity’, and therefore we do not expect strong
dynamical localization effects.

The aim is to demonstrate the effects of tunneling, as has been done in [20], which can
be expected only at very low-lying eigenstates, due to the exponential dependence on 1/h̄eff .
Therefore, we have taken exactly the same spectra as in [20] (figure 8) and analyzed them
in the light of the present TBRB theory. While in [20] the agreement with the TDBR has
been found at spacings about S � 0.1, here we find deviation from that model at smaller
spacings, but in excellent agreement with the present TBRB theory, as shown in figure 17
for P(S) and in figure 18 for the U-function plot. It is found that β = 1, thus there is no
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Figure 18. U-function plot for the mushroom billiard with the energy spectrum exactly as in
Vidmar et al [20]. The full curve is TBRB with classical ρ1 = 0.268, β = 1 and σ = 0.1. The
dashed curve is TDBR with the same parameters, and the dotted curve is just BRB (σ = 0) with the
same β = 1 and ρ1. We see that the TBRB coupling model is much better than TDBR, especially
at small spacings.

localization present, whilst the classical ρ1 = 0.268 and σ = 0.1 give excellent description of
the numerical spectra. The discrepancy between the data and the theory at S � 2.5 is due to
the statistical errors (not enough independent objects in the sample).

7. Discussion and conclusions

In this paper we have shown that below the asymptotic BR regime (the deep semiclassical limit
of sufficiently small effective Planck constant) we find the quasi-universal regime where the
effects of the dynamical localization of chaotic eigenstates (in the phase space, as described
by the Wigner functions) and the effects of couplings due to tunneling between the regular and
chaotic eigenstates can be on the average modeled by the new semiempirical TBRB theory
with three parameters: ρ1 which is the relative Liouville volume of the regular components
in the classical phase space, the Brody parameter β describing the degree of localization, and
the σ parameter describing the strength of the tunneling couplings.

We have introduced as a model the ensemble of large matrices with a Poissonian diagonal
block of relative size ρ1, the chaotic (but localized) diagonal block of relative size ρ2 = 1−ρ1

with the Brody distribution having a parameter β, and the off-diagonal coupling elements
(uniform random coupling of all states, regular and chaotic), with the sparsity parameter
s = 2ρ1(1 − ρ1), and with variance σ 2, usually taken to be Gaussian, although other
distributions like exponential have been tested as well, and it is found that the results depend
only weakly on the kind of distribution functions, especially at not too large σ , as long as they
have the same variance σ 2.

We have developed an analytic theory which improves and generalizes the theory in a
recent paper by Vidmar et al [20] by introducing the localization effects. The theory is still
based on an effective two-level model, capturing all the essential features of the large random
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matrix ensembles described above (sparsed couplings), rather than the block matrices from
[20]. In appendix C we summarize the three different random matrix coupling models.

This analytic theory (TBRB) has been tested in the case of a mixed-type dynamical system,
namely the billiard introduced by Robnik [34, 35], and largely perfect agreement has been
found. In cases of not so perfect agreement we have reasons to believe that— apart from the
possible statistical fluctuations—we are still not in the sufficiently deep semiclassical limit, and
that the localization effects cannot yet be entirely described on the average by one parameter β,
which is expected to occur at higher energies. The reason really is that at such lower energies
and the given classical dynamics other types of localization play an important role, e.g. the
effects of sticky objects in the classical phase space, like cantori. See the excellent review
by Prosen [21]. Nevertheless, the important conclusion is that the dynamical localization is
typically a very strong dominating effect which persists even to such high-lying states like one
million above the ground state. On the other hand, the tunneling effects typically disappear
very quickly with increasing energy, due to the exponential dependence on the reciprocal
effective Planck constant 1/h̄eff . This has been reconfirmed also in the Prosen billiard, for two
geometries, a = 0.04 and 0.03.

In the so-called mushroom billiard introduced by Bunimovich [27], also studied in this
paper, following [20], the classical dynamics is strongly chaotic and the geometry of the
(exactly one) chaotic component and its boundary is quite smooth; there are no important
sticky objects in the classical phase space. Therefore, the effects of localization are very weak
even at low energies, β = 1, but the tunneling couplings between the (exactly one) regular
and the (exactly one) chaotic component are important.

The theory should be tested in other billiards or dynamical systems, for example in the
hydrogen atom in the strong magnetic field [39–43, 45].

The important open theoretical issues are the understanding of the details of the geometry
of quantum eigenstates in the quantum phase space, that is of the Wigner functions, in
correspondence with the geometry and structure of the classical phase space and the dynamics
(classical diffusion), which will explain why and how the quantal effective ρ1 deviates from
its classical value, and how can be the parameter of dynamical localization β predicted and
explained in a semiclassical context.
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Appendix A.

First we estimate the expected fluctuation (error) of the cumulative (integrated) level spacing
distribution W(S), which contains Ns objects. At a certain S we have the probability W that a
level is in the interval [0,W ] and 1 − W that it is in the interval [W, 1]. Assuming binomial
probability distribution P(k) of having k levels in the first and Ns − k levels in the second
interval we have

P(k) = Ns!

k!(Ns − k)!
Wk(1 − W)Ns−k. (A.1)

Then the average values are equal to

〈k〉 = NsW, 〈k2〉 = NsW + Ns(Ns − 1)W 2, (A.2)
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and the variance V (k) = 〈k2〉 − 〈k〉2,

V (k) = NsW(1 − W). (A.3)

But the probability W is estimated in the mean as k/Ns . Its variance is

V (W) = V

(
k

Ns

)
= 1

N2
s

V (k) = W(1 − W)

Ns

, (A.4)

and therefore the estimated error of W (standard deviation, the square root of the variance) is
given by

δW =
√

V (W) =
√

W(1 − W)

Ns

. (A.5)

Transforming now from W(S) to

U(S) = 2

π
arccos

√
1 − W(S), (A.6)

we show in a straightforward manner that

δU = 1

π
√

Ns

, (A.7)

and is indeed independent of S. From the (choice of the constant prefactor in the) definition
(A.6) one sees that both U(S) and W(S) go from 0 to 1 as S goes from 0 to infinity.

Appendix B.

We briefly describe the numerical method of calculating the relative Liouville (phase space)
volume of the chaotic component ρ2 = 1 − ρ1 in classical Hamilton systems like billiards,
which is based on [36], and known under the name ‘counting the black cells’. The relative
Liouville volume is certainly not equal the relative area (of the chaotic component) on the
SOS, but can be obtained through the relationship found by Meyer [47] for the integrals of
any classical function (of coordinates q and momenta p) f = f (q, p) over the energy surface
E and SOS as follows:∫

M
f (q, p)δ(E − H(q, p)) dq dp =

∫
SOS

f (q, p)τ(q, p) dq dp, (B.1)

where δ(x) is the Dirac delta function, and τ(q, p) is the average physical return time of a
trajectory through the point (q, p) on/from SOS back to SOS, and is formally a constant of
motion on the invariant component (either torus or chaotic component). M denotes the entire
phase space in which the energy surface E = H(q, p) is embedded. If we take f = 1 we get
the phase space volume � of the entire energy surface. If we take for f just the characteristic
function of the chaotic component denoted by C, f = χch, having the value 1 on C and
zero elsewhere, we get the Liouville phase space volume of the chaotic component �ch.3 The
quantity ρ2 is then equal to

ρ2 = �ch

�
=

∫
C τ dq dp∫

SOS τ dq dp
. (B.2)

The idea of the method is first to cover the SOS with a grid of size N × N small square cells,
such that the area of each cell is ε. Then an orbit is started in the chaotic region C, and for each

3 which, according to (B.1), is the integral of τ over C on SOS, and since τ is constant over the entire chaotic
component C, �ch is formally equal to the product of τ and the area Ach of the chaotic component on the SOS.
However, in practice, due to ‘slow ergodicity’, it is better to proceed as in equations (B.2)–(B.4).
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Table B1. We compare the exact and the numerical values of ρ1 = 1 − ρ2 for some representative
parameter values a and b of the mushroom billiard defined in figure 16. The agreement is excellent.

a b ρexact ρmeasured

0.5 0.5 0.511 255 0.5110
1 1 0.296 594 0.2963
0.5 1 0.337 317 0.3371
0.5 0.25 0.678 000 0.6778

cell with coordinates (i, j) and index k = k(i, j) we then have a counter η(k), which increases
by 1 on each visit at t (discrete time = number of SOS crossings, in the case of billiards, this
is the number of collisions at the boundary), namely

η(k) → η(k) + 1. (B.3)

The second counter is the phase space volume �(k) which increases as follows:

�(k) → �(k) + ετ(t), (B.4)

where τ(t) is the real physical return time of the actual physical orbit from SOS to SOS, on
(t − 1) → t . At the end of calculation we replace �(k) by �(k)/η(k) and sum up all �(k),
to get �ch. If we do the same thing for the entire SOS, starting a trajectory in each cell, we
get �. Formula (B.2) then gives ρ2. In our calculations we have typically taken N = 5000.

The method has been very carefully tested, like in the unpublished works of Dobnikar
[48] and Vidmar [49]. The most rigorous test is by comparing the numerical results with
the analytical results. For the mushroom billiard as defined in figure 16 there exists an exact
analytic formula [46] for ρ2 = 1 − ρ1, namely

ρ2 = B/A, (B.5)

where A = ab + π
4 (b + 1)2 is the area of the billiard and

B = ab +
1

2

(
(b + 1)2 arcsin

(
b

b + 1

)
+ b

√
1 + 2b

)
. (B.6)

In table B1 we compare the results on ρ1 = 1 − ρ2 for some representative values of a and b.
The agreement is excellent.

Another test of accuracy was the diamond billiard, which is ergodic, and we indeed
obtained numerically ρ2 = 1 − ρ1 = 0.9997.

Appendix C.

Here we summarize the definitions and properties of the three N × N random real symmetric
matrix coupling models, as shown in figure C1 and the corresponding two-level analytical
theory for the level spacing distribution P(S). In all three cases we have on the diagonal
a Poisson block of size ρ1N and a Brody block with parameter β and of size ρ2N , where
ρ2 = 1 − ρ1. Thus, the level spacing distribution of the diagonal elements is BRB (Berry–
Robnik–Brody) for all three models, i.e. P BRB(S). The differences appear in the structure of
the off-diagonal coupling terms. All non-zero off-diagonal matrix elements b have the same
Gaussian distribution (14).

A-model. All off-diagonal matrix elements are non-zero; thus, we have all-to-all couplings,
such as those that appear e.g. due to a global perturbation in the system, for example in the
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Figure C1. The structure of the three different coupling models in the form of large N× N random
matrices.

microwave resonators due to the existence of an antenna inside the cavity. In [20] the model
was termed ADBR (antenna-distorted Berry–Robnik), but now is generalized to include the
localization effects. The theoretical two-level level spacing distribution is obtained by using
directly the coupling formula (11), and is given by

P(S) = S

σ
√

2π

∫ π/2

0
P BRB(S cos ϕ) exp

(
− (S sin ϕ)2

8σ 2

)
dϕ. (C.1)
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T-model. Here only the regular (r) and chaotic (c) levels are coupled; therefore, the non-zero
off-diagonal elements reside only within the off-diagonal blocks as indicated in figure C1.
The theoretical two-level level spacing distribution P(S) is given by equation (20), namely

P(S) = Prr(S) + Pcc(S) +
S

σ
√

2π

∫ π/2

0
Prc(S cos ϕ) exp

(
− (S sin ϕ)2

8σ 2

)
dϕ. (C.2)

where Prr(S), Pcc(S) and Prc(S) are defined in equation (19). Thus, equation (C.2) gives much
better theoretical description of the underlying matrix ensemble (generalized TDBR) than the
one proposed in [20], especially at small spacings S.

S-model. Here not all off-diagonal elements are non-zero, but only a relative fraction
s = 2ρ1ρ2 = 2ρ1(1 − ρ1) of them, which otherwise are uniformly randomly distributed
over the off-diagonal matrix elements positions. This is due to the fact that we do not know
and assume any specific information on the basis functions, except that they can be classified
as regular and/or chaotic. The corresponding level spacing distribution is given by formula
(22), namely

P(S) = 2ρ1(1 − ρ1)S

σ
√

2π

∫ π/2

0
P BRB(S cos ϕ) exp

(
− (S sin ϕ)2

8σ 2

)
dϕ

+ (1 − 2ρ1(1 − ρ1)) P BRB(S). (C.3)

It turns out that the S-model, which is precisely the TBRB model and theory, successfully
describes the couplings due to the tunneling in real dynamical systems, much better than the
T-model, especially at small spacings S.
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